dgs.models.submission.MOT.MOTSubmission

class dgs.models.submission.MOT.MOTSubmission(config: dict[str, any], path: list[str])[source]

Class for creating and appending to a MOT -style submission file.

Optional Params:
  • bbox_decimals (int, optional) – The number of decimals to save for the bbox coordinates. Default DEF_VAL["submission"]["MOT"]["bbox_decimals"].

  • score_decimals (int, optional) – The number of decimals to save for the score value. Is only used if the score is present and score >= 0. Default DEF_VAL["submission"]["MOT"]["score_decimals"].

Methods

__init__(config: dict[str, any], path: list[str]) None[source]
append(s: State, *_args, **_kwargs) None[source]

Given a new state containing the detections of one image, append the data to the submission file.

clear() None[source]

Clear the data.

configure_torch_module(module: torch.nn.Module, train: bool | None = None) torch.nn.Module

Set compute mode and send model to the device or multiple parallel devices if applicable.

Parameters:
  • module – The torch module instance to configure.

  • train – Whether to train or eval this module, defaults to the value set in the base config.

Returns:

The module on the specified device or in parallel.

save() None[source]

Save the current data to the given filepath.

terminate() None

Terminate the submission file creation.

validate_params(validations: dict[str, list[str | type | tuple[str, any] | Callable[[any, any], bool]]], attrib_name: str = 'params') None

Given per key validations, validate this module’s parameters.

Throws exceptions on invalid or nonexistent params.

Parameters:
  • attrib_name – name of the attribute to validate, should be “params” and only for base class “config”

  • validations

    Dictionary with the name of the parameter as key and a list of validations as value. Every validation in this list has to be true for the validation to be successful.

    The value for the validation can have multiple types:
    • A lambda function or other type of callable

    • A string as reference to a predefined validation function with one argument

    • None for existence

    • A tuple with a string as reference to a predefined validation function with one additional argument

    • It is possible to write nested validations, but then every nested validation has to be a tuple, or a tuple of tuples. For convenience, there are implementations for “any”, “all”, “not”, “eq”, “neq”, and “xor”. Those can have data which is a tuple containing other tuples or validations, or a single validation.

    • Lists and other iterables can be validated using “forall” running the given validations for every item in the input. A single validation or a tuple of (nested) validations is accepted as data.

Example

This example is an excerpt of the validation for the BaseModule-configuration.

>>> validations = {
    "device": [
            str,
            ("any",
                [
                    ("in", ["cuda", "cpu"]),
                    ("instance", torch.device)
                ]
            )
        ],
        "print_prio": [("in", PRINT_PRIORITY)],
        "callable": (lambda value: value == 1),
    }

And within the class __init__() call:

>>> self.validate_params()
Raises:

Attributes

device

Get the device of this module.

is_training

Get whether this module is set to training-mode.

module_name

Get the name of the module.

module_type

name

Get the name of the module.

name_safe

Get the escaped name of the module usable in filepaths by replacing spaces and underscores.

precision

Get the (floating point) precision used in multiple parts of this module.

data

A list containing the values as tuple, like: tuple(<frame>, <id>, <bb_left>, <bb_top>, <bb_width>, <bb_height>, <conf>, <x>, <y>, <z>)

frame_id

fp

format