dgs.models.similarity.pose_similarity.IntersectionOverUnion

class dgs.models.similarity.pose_similarity.IntersectionOverUnion(*args: Any, **kwargs: Any)[source]

Use the bounding-box based intersection-over-union as a similarity metric.

Params

__init__(config: dict[str, any], path: list[str])[source]

Methods

configure_torch_module(module[, train])

Set compute mode and send model to the device or multiple parallel devices if applicable.

forward(data, target)

Given two states containing bounding-boxes, compute the intersection over union between each pair.

get_data(ds)

Given a State obtain the ground-truth bounding-boxes as torchvision.tv_tensors.BoundingBoxes object of size [N x 4].

get_target(ds)

Given a State obtain the ground-truth bounding-boxes as torchvision.tv_tensors.BoundingBoxes object of size [T x 4].

get_train_data(ds)

A custom function to get special data for training purposes.

terminate()

Terminate this module and all of its submodules.

validate_params(validations[, attrib_name])

Given per key validations, validate this module's parameters.

Attributes

device

Get the device of this module.

is_training

Get whether this module is set to training-mode.

module_name

Get the name of the module.

module_type

name

Get the name of the module.

name_safe

Get the escaped name of the module usable in filepaths by replacing spaces and underscores.

precision

Get the (floating point) precision used in multiple parts of this module.

softmax