dgs.models.embedding_generator.torchreid.TorchreidEmbeddingGenerator¶
- class dgs.models.embedding_generator.torchreid.TorchreidEmbeddingGenerator(*args: Any, **kwargs: Any)[source]¶
Given image crops, generate embedding using the torchreid package.
The model can use the default pretrained weights or custom weights.
Notes
This model will be set to evaluate only right now! Pretrain your models using the
torchreid
package and possibly the custom PT21 data loaders, then load the weights. The classifier is not required for embedding generation.Notes
Setting the parameter
embedding_size
does not change this module’s output. Torchreid does not support custom embedding sizes.Module Name¶
torchreid
Params¶
- model_name (str):
The name of the torchreid model used. Has to be one of
~torchreid.models.__model_factory.keys()
.
Optional Params¶
- weights (Union[str, FilePath], optional):
A path to the model weights or the string ‘pretrained’ for the default pretrained torchreid model. Default
DEF_VAL.embed_gen.torchreid.weights
.- image_key (str, optional):
The key of the image to use when generating the embedding. Default
DEF_VAL.embed_gen.torchreid.image_key
.
Important Inherited Params¶
- nof_classes (int):
The number of classes in the dataset. Used during training to predict the class-id. For most of the pretrained torchreid models, this ist set to
1_000
.
- __init__(*args, **kwargs)¶
Methods
configure_torch_module
(module[, train])Set compute mode and send model to the device or multiple parallel devices if applicable.
Return whether the embedding_key of this model exists in a given state.
forward
(ds)Predict embeddings given some input.
predict_embeddings
(data)Predict embeddings given some input.
predict_ids
(data)Predict class IDs given some input.
Terminate this module and all of its submodules.
validate_params
(validations[, attrib_name])Given per key validations, validate this module's parameters.
Attributes
Get the device of this module.
Get whether this module is set to training-mode.
Get the name of the module.
Get the name of the module.
Get the escaped name of the module usable in filepaths by replacing spaces and underscores.
Get the (floating point) precision used in multiple parts of this module.
The size of the embedding.
The number of classes in the dataset / embedding.