dgs.models.dataset.MOT.MOTImageHistory¶
- class dgs.models.dataset.MOT.MOTImageHistory(*args: Any, **kwargs: Any)[source]¶
Load a ground-truth- or detection-file in the
MOT
format by making sure, that all detections except the firstL
ones are loaded and are returned with the history.Params¶
- data_path (FilePath):
The local or absolute path to the txt or csv file containing the MOT annotations.
Optional Params¶
- file_separator (str, optional):
The str or regular expression used to split the lines in the annotation file. Default
DEF_VAL["dataset"]["MOT"]["file_separator"]
.- crop_key (str, optional):
The name of the key in the seqinfo file containing the info for the image crops. Default
DEF_VAL["dataset"]["MOT"]["crop_key"]
.- seqinfo_path (str, optional):
The optional path to the
seqinfo.ini
file. DefaultDEF_VAL["dataset"]["MOT"]["seqinfo_path"]
.- seqinfo_key (str, optional):
The key to use in the seqinfo file. Default
DEF_VAL["submission"]["MOT"]["seqinfo_key"]
.
- __init__(config: dict[str, any], path: list[str])[source]¶
Methods
arbitrary_to_ds
(a, idx)Given a single image ID or filepath, obtain the image, bbox, and possibly more information, then convert everything to a
State
object.configure_torch_module
(module[, train])Set compute mode and send model to the device or multiple parallel devices if applicable.
get_image_crops
(ds)Add the image crops and local key-points to a given state.
get_path_in_dataset
(path)Given an arbitrary file- or directory-path, return its absolute path.
Terminate this module and all of its submodules.
Given one single image, with its corresponding bounding boxes and key-points, obtain a cropped image for every bounding box with localized key-points.
Given an image, bboxes, and key-points, resize them with custom modes.
validate_params
(validations[, attrib_name])Given per key validations, validate this module's parameters.
Attributes
Get the device of this module.
Get whether this module is set to training-mode.
Get the name of the module.
Get the name of the module.
Get the escaped name of the module usable in filepaths by replacing spaces and underscores.
Get the (floating point) precision used in multiple parts of this module.
Arbitrary data, which will be converted using
self.arbitrary_to_ds()
The base path to the dataset.