dgs.models.similarity.similarity.SimilarityModule

class dgs.models.similarity.similarity.SimilarityModule(*args: Any, **kwargs: Any)[source]

Abstract class for similarity functions.

Params:

module_name (str) – The name of the similarity module.

Optional Params:
  • softmax (bool, optional) – Whether to apply the softmax function to the (batched) output of the similarity function. Default DEF_VAL.similarity.softmax.

  • train_key (str, optional) – A name of a State property to use to retrieve the data during training. E.g. usage of State.bbox_relative() instead of the regular bbox. If this value isn’t set, the regular SimilarityModule.get_data() call is used.

Methods

__init__(config: dict[str, any], path: list[str])[source]
configure_torch_module(module: torch.nn.Module, train: bool | None = None) torch.nn.Module

Set compute mode and send model to the device or multiple parallel devices if applicable.

Parameters:
  • module – The torch module instance to configure.

  • train – Whether to train or eval this module, defaults to the value set in the base config.

Returns:

The module on the specified device or in parallel.

abstract forward(data: State, target: State) torch.Tensor[source]

Compute the similarity between two input tensors. Make sure to compute the softmax if softmax is True.

abstract get_data(ds: State) any[source]

Get the data used in this similarity module.

abstract get_target(ds: State) any[source]

Get the data used in this similarity module.

get_train_data(ds: State) any[source]

A custom function to get special data for training purposes. If “train_key” is not given, uses the regular get_data() function of this module.

terminate() None

Terminate this module and all of its submodules.

If nothing has to be done, just pass. Is used for terminating parallel execution and threads in specific models.

validate_params(validations: dict[str, list[str | type | tuple[str, any] | Callable[[any, any], bool]]], attrib_name: str = 'params') None

Given per key validations, validate this module’s parameters.

Throws exceptions on invalid or nonexistent params.

Parameters:
  • attrib_name – name of the attribute to validate, should be “params” and only for base class “config”

  • validations

    Dictionary with the name of the parameter as key and a list of validations as value. Every validation in this list has to be true for the validation to be successful.

    The value for the validation can have multiple types:
    • A lambda function or other type of callable

    • A string as reference to a predefined validation function with one argument

    • None for existence

    • A tuple with a string as reference to a predefined validation function with one additional argument

    • It is possible to write nested validations, but then every nested validation has to be a tuple, or a tuple of tuples. For convenience, there are implementations for “any”, “all”, “not”, “eq”, “neq”, and “xor”. Those can have data which is a tuple containing other tuples or validations, or a single validation.

    • Lists and other iterables can be validated using “forall” running the given validations for every item in the input. A single validation or a tuple of (nested) validations is accepted as data.

Example

This example is an excerpt of the validation for the BaseModule-configuration.

>>> validations = {
    "device": [
            str,
            ("any",
                [
                    ("in", ["cuda", "cpu"]),
                    ("instance", torch.device)
                ]
            )
        ],
        "print_prio": [("in", PRINT_PRIORITY)],
        "callable": (lambda value: value == 1),
    }

And within the class __init__() call:

>>> self.validate_params()
Raises:

Attributes

device

Get the device of this module.

is_training

Get whether this module is set to training-mode.

module_name

Get the name of the module.

module_type

name

Get the name of the module.

name_safe

Get the escaped name of the module usable in filepaths by replacing spaces and underscores.

precision

Get the (floating point) precision used in multiple parts of this module.

softmax