dgs.models.metric.metric.compute_near_k_accuracy¶
- dgs.models.metric.metric.compute_near_k_accuracy(a_pred: torch.Tensor, a_targ: torch.Tensor, ks: list[int]) dict[int, float] [source]¶
Compute the number of correct predictions within a margin of k percent for all k.
Test whether the predicted alpha probability (\(\alpha_{\mathrm{pred}}\)) matches the given ground truth probability (\(\alpha_{\mathrm{correct}}\)). With \(\alpha{\mathrm{pred}} = \frac{\alpha_{\mathrm{nof correct}}}{\mathrm{nof total}}\), :math`alpha{mathrm{pred}}` is counted as correct if \(\alpha{\mathrm{pred}}-k \leq \alpha{\mathrm{correct}} \leq \alpha{\mathrm{pred}}+k\).
- Parameters:
a_pred – The predicted alpha probabilities as tensor of shape
[N (x 1)]
.a_targ – The correct / target alpha probabilities as tensor of shape
[N (x 1)]
.ks – A list of length
K
containing percentage values. Used to check whether the accuracies lie within a margin of k percent.
- Returns:
A dict mapping the integer value
k
to the respective accuracy.